254 research outputs found

    Set Theory or Higher Order Logic to Represent Auction Concepts in Isabelle?

    Full text link
    When faced with the question of how to represent properties in a formal proof system any user has to make design decisions. We have proved three of the theorems from Maskin's 2004 survey article on Auction Theory using the Isabelle/HOL system, and we have produced verified code for combinatorial Vickrey auctions. A fundamental question in this was how to represent some basic concepts: since set theory is available inside Isabelle/HOL, when introducing new definitions there is often the issue of balancing the amount of set-theoretical objects and of objects expressed using entities which are more typical of higher order logic such as functions or lists. Likewise, a user has often to answer the question whether to use a constructive or a non-constructive definition. Such decisions have consequences for the proof development and the usability of the formalization. For instance, sets are usually closer to the representation that economists would use and recognize, while the other objects are closer to the extraction of computational content. In this paper we give examples of the advantages and disadvantages for these approaches and their relationships. In addition, we present the corresponding Isabelle library of definitions and theorems, most prominently those dealing with relations and quotients.Comment: Preprint of a paper accepted for the forthcoming CICM 2014 conference (cicm-conference.org/2014): S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, Springer International Publishing Switzerland 2014. 16 pages, 1 figur

    Improving the use of equational constraints in cylindrical algebraic decomposition

    Get PDF
    When building a cylindrical algebraic decomposition (CAD) savings can be made in the presence of an equational constraint (EC): an equation logically implied by a formula. The present paper is concerned with how to use multiple ECs, propagating those in the input throughout the projection set. We improve on the approach of McCallum in ISSAC 2001 by using the reduced projection theory to make savings in the lifting phase (both to the polynomials we lift with and the cells lifted over). We demonstrate the benefits with worked examples and a complexity analysis

    Relating two standard notions of secrecy

    Get PDF
    Two styles of definitions are usually considered to express that a security protocol preserves the confidentiality of a data s. Reachability-based secrecy means that s should never be disclosed while equivalence-based secrecy states that two executions of a protocol with distinct instances for s should be indistinguishable to an attacker. Although the second formulation ensures a higher level of security and is closer to cryptographic notions of secrecy, decidability results and automatic tools have mainly focused on the first definition so far. This paper initiates a systematic investigation of the situations where syntactic secrecy entails strong secrecy. We show that in the passive case, reachability-based secrecy actually implies equivalence-based secrecy for digital signatures, symmetric and asymmetric encryption provided that the primitives are probabilistic. For active adversaries, we provide sufficient (and rather tight) conditions on the protocol for this implication to hold.Comment: 29 pages, published in LMC

    Formalising Szemerédi’s regularity lemma and Roth’s theorem on arithmetic progressions in Isabelle/HOL

    Get PDF
    We have formalised Szemerédi’s Regularity Lemma and Roth’s Theorem on Arithmetic Progressions, two major results in extremal graph theory and additive combinatorics, using the proof assistant Isabelle/HOL. For the latter formalisation, we used the former to first show the Triangle Counting Lemma and the Triangle Removal Lemma: themselves important technical results. Here, in addition to showcasing the main formalised statements and definitions, we focus on sensitive points in the proofs, describing how we overcame the difficulties that we encountered

    Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations

    Full text link
    We present a formal tool for verification of multivariate nonlinear inequalities. Our verification method is based on interval arithmetic with Taylor approximations. Our tool is implemented in the HOL Light proof assistant and it is capable to verify multivariate nonlinear polynomial and non-polynomial inequalities on rectangular domains. One of the main features of our work is an efficient implementation of the verification procedure which can prove non-trivial high-dimensional inequalities in several seconds. We developed the verification tool as a part of the Flyspeck project (a formal proof of the Kepler conjecture). The Flyspeck project includes about 1000 nonlinear inequalities. We successfully tested our method on more than 100 Flyspeck inequalities and estimated that the formal verification procedure is about 3000 times slower than an informal verification method implemented in C++. We also describe future work and prospective optimizations for our method.Comment: 15 page

    Deduction with XOR Constraints in Security API Modelling

    Get PDF
    We introduce XOR constraints, and show how they enable a theorem prover to reason effectively about security critical subsystems which employ bitwise XOR. Our primary case study is the API of the IBM 4758 hardware security module. We also show how our technique can be applied to standard security protocols

    Truth Table Invariant Cylindrical Algebraic Decomposition by Regular Chains

    Get PDF
    A new algorithm to compute cylindrical algebraic decompositions (CADs) is presented, building on two recent advances. Firstly, the output is truth table invariant (a TTICAD) meaning given formulae have constant truth value on each cell of the decomposition. Secondly, the computation uses regular chains theory to first build a cylindrical decomposition of complex space (CCD) incrementally by polynomial. Significant modification of the regular chains technology was used to achieve the more sophisticated invariance criteria. Experimental results on an implementation in the RegularChains Library for Maple verify that combining these advances gives an algorithm superior to its individual components and competitive with the state of the art

    Where Next for Formal Methods?

    Get PDF

    La relación personal en el tratamiento de la diversidad

    Get PDF
    El autor centra su aportación en diferentes características de los organismos vivos, para incorporarlas a las perspectivas interpretativas y operativas, y de los métodos actuales de intervención educativa. En el texto también se trata el enfoque positivo desde la dimensión técnica y no «voluntarista», teniendo en cuenta que los especialistas que adoptan la perspectiva del enfoque positivo dan mucha importancia al tema de la calidad de vida.L'autor centra la seva aportació en diferents característiques dels organismes vius, per incorporar- les a les perspectives interpretatives i operatives, i dels mètodes actuals d'intervenció educativa. Al text també es tracta l'enfocament positiu des de la seva dimensió tècnica i no «voluntarista», tenint en compte que els especialistes que adopten la perspectiva de l'enfocament positiu donen molta importància al tema de la qualitat de vida.The author focuses on the different characteristics of the alive organisms in order to include them into the interpretative and operative views of the current methods of educational intervention. He also deals with the positive focus, from the technical and «no voluntary» dimension, taking into account that those specialists having this kind of view do emphasize a lot on the quality of life issue

    A Paraconsistent Higher Order Logic

    Full text link
    Classical logic predicts that everything (thus nothing useful at all) follows from inconsistency. A paraconsistent logic is a logic where an inconsistency does not lead to such an explosion, and since in practice consistency is difficult to achieve there are many potential applications of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order logic with countable infinite indeterminacy, where each basic formula can get its own indeterminate truth value (or as we prefer: truth code). The meaning of the logical operators is new and rather different from traditional many-valued logics as well as from logics based on bilattices. The adequacy of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens.Comment: Originally in the proceedings of PCL 2002, editors Hendrik Decker, Joergen Villadsen, Toshiharu Waragai (http://floc02.diku.dk/PCL/). Correcte
    • …
    corecore